VOL. 49, NO. 7

JOURNAL OF THE ATMOSPHERIC SCIENCES

Behavior of a Moist Kelvin Wave Packet with Nonlinear Heating

BIN WANG AND YAN XUE
Department of Meteorology, University of Hawaii, Honolulu, Hawaii

(Manuscript received 26 July 1990, in final form 15 January 1991)

ABSTRACT

The effects of nonlinear (positive only or conditional) heating on moist Kelvin waves are examined with a
simple equatorial zonal-plane model describing the gravest baroclinic mode. .

The unstable perturbation subject to nonlinear heating emerges as a wave packet. A typical amplifying,
eastward-moving wave packet is characterized by an asymmetric structure: 1) the ascending branch (wet region)
is much narrower than the two descending ones (dry regions); and 2) the circulation cell to the east of the wet
region center is smaller and stronger than its counterpart to the west of the center. The wet—dry asymmetry is
primarily caused by the nonlinear heating effect, while the east-west asymmetry is a resuit of the movement of
the wave packet relative to mean flow. The existence of Newtonian cooling and Rayleigh friction enhances the
structural asymmetries.

The unstable wave packet is characterized by two zonal length scales: the ascending branch length (ABL)
and total circulation extent (TCE). For a given basic state, the growth rate of a wave packet increases with
decreasing ABL or TCE. However, up to a moderate growth rate (order of day ') the energy spectra of all wave
packets are dominated by zonal wavenumber one regardless of ABL size. In particular, the slowly growing (low
frequency) wave packets normally exhibit TCEs of planetary scale and ABLs of synoptic scale.

Observed equatorial intraseasonal disturbances often display a narrow convection region in between two
much broader dry regions and a total circulation of planetary scale. These structure and scale characteristics
are caused by the effects of nonlinear heating and the cyclic geometry of the equator. It is argued that the
unstable disturbance found in numerical experiments (e.g., Lau and Peng; Hayashi and Sumi) is a manifestation
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pf the nonlinear wave packet.

1. Introduction

Observed eastward-moving Madden-Julian (40-50
day) waves often display a synoptic-scale ascending
(convection) region in between two much larger de-
scending (dry) regions. The circulation anomalies as-
sociated with the ascending and descending areas form
a coherent planetary-scale circulation cell (e.g., Mad-
den and Julian 1972; Knutson and Weickmann 1987,
or Figs. 2 and 3 of Rui and Wang 1990). This feature
appears to be reproducible in numerical simulations
using general circulation models or simple numerical
models (e.g., Hayashi and Sumi 1986; Lau and Peng
1987; Hendon 1988; Lau et al. 1988; Swinbank et al.
1988; Hayashi and Golder 1988).

Efforts have been made to explain why the Madden-
Julian waves have a characteristic planetary zonal cir-
culation scale. The inviscid linear instabilities resulting
from condensation-moisture convergence feedback
(wave-CISK) (e.g., Hayashi 1970; Lindzen 1974;
Chang and Lim 1988) or the evaporation-wind feed-
back (Neelin et al. 1987; Emanuel 1987) all failed to
explain the selection of planetary-scale motion due to
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explosive growth of short waves. Although the heating
associated with boundary-layer moisture convergence
was shown to be able to integrate vertical modes and/
or horizontal modes (long Kelvin and Rossby waves)
such that the generation of wave energy maximizes at
planetary scales (Wang and Chen 1989; Wang and Rui
1990), the linear theory does not explain the cause of
the observed asymmetries in size and strength between
the ascending and descending branches.

In their numerical experiments, Lau and Peng (1987,
hereafter denoted as LP) found that with positive-only
heating (also referred to as conditional heating or non-
linear heating; i.e., the heat is released only in large-
scale ascending areas) the disturbances take on a wave-
number-one structure with most of their energy in the
longest wavelength component. Recently, Lim et al.
(1990) argued that the nonlinearity associated with the
positive-only heating operates effectively even for an
infinitesimal perturbation. In this sense, the CISK
mechanism inherently possesses a severe form of non-
linearity. They solved an initial-value problem with a
simple two-dimensional spectral model and demon-
strated that the nonlinear heating is able to produce
exponentially growing, large-scale flow patterns that
propagate eastward without change of shape. Using
controlled numerical experiments, Itoh (1989) found
that in order for a super cloud cluster to dominate
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among other possibly growing clusters, dry regions
must be assumed to exist over wide areas in which the
generation of cumulus by weak moisture convergence
is artificially prohibited. This mechanism of suppressing
small-scale cumulus is similar to an enhanced positive-
only heating.

The positive-only heating parameterization has been
adopted in the previous studies of Ekman-CISK
(Charney and Eliassen 1964; Syono and Yamasaki
1966; Koss 1975). The pioneering study of Ekman-
CISK with positive-only heating (Charney and Eliassen
1964) showed that the fastest growing mode exhibits
a mesoscale (50 km) ascending region (the radius of
ascending region was defined as a characteristic scale
for the Ekman-CISK disturbance). The question thus
arises: does the positive-only heating have different im-
pact on the scale dependence of growth rate for equa-
torial Kelvin wave~CISK and the Ekman-CISK? Fur-
thermore, is the asymmetric nature of the nonlinear
heating responsible for the structural asymmetry be-
tween the wet (ascending) and dry (descending) re-
gions? In a more general perspective, what are the ef-
fects of positive-only heating on the equatorial wave
dynamics?

In this study we address these questions in terms of
the simplest model of equatorial Kelvin wave~-CISK
that depicts only the gravest baroclinic mode. Rigor-
ously speaking, the presence of convective heating does
not allow a pure zonal motion since thermally forced
overturning always induces significant off-equatorial
meridional flows. Such an idealized model is merely
instrumental in demonstrating the wave-CISK mech-
anism and has been widely employed in theoretical
analysis (e.g., Emanuel 1987; Neelin et al. 1987; Lau
and Peng 1987; Wang 1988). The solutions may be
viewed as the lowest-order approximations to those of
more complete two-dimensional models. A description
of the model is given in section 2. The simplicity of
this model allows us to derive an analytical solution
in section 3 by solving two linear problems in wet and
dry regions separately and then matching solutions at
the wet-dry boundaries, following Charney and Elias-
sen (1964). It is demonstrated in sections 4 and 5 that
the behavior of the unstable mode in the present model
shares similarities with the unstable disturbances found
in numerical studies of an initial-value problem of
Kelvin wave-CISK such as LP and Lim et al. (1989).
The analytical solution helps to reveal a number of
distinct features of this nonlinear mode. It enables us
to better understand why the slowly growing mode of-
ten displays a planetary-scale circulation cell with a
synoptic-scale ascending branch.

2. The model

To focus on the effect of the positive-only heating
and to make the problem analytically tractable, we
consider small-amplitude motion about an uniform
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basic state that moves with a constant zonal speed Uj.
Since diabatic heating with a maximum in the middle
troposphere primarily stimulates the gravest baroclinic
mode, a single vertical mode is considered (Gill 1980).
The moist equatorial Kelvin wave can be investigated
on an equatorial 8 plane with pressure coordinates by
neglecting meridional motion; that is,

du ou  0¢
o Uoz+2-=0, (2.1a)
pu+2 -0 (2.1b)
it 5o =0, :
3 3 . ,0u R
—_— + _ —_— = — .
a TV TC0 5= T3 (219

where u# and ¢ can be interpreted as perturbational
zonal velocity and geopotential of the lower layer of
the atmosphere. Here Cp = (S,Ap?/2)!'/? is the long
gravity-wave speed of the gravest baroclinic mode, S,
is the static stability parameter at p, = 500 mb, and
Ap = p,. In (2.1c), R and C, are the gas constant for
air and the specific heat at constant pressure, and O,
denotes the total diabatic heating rate per unit mass at
p>. For simplicity, Q, only contains parameterized
convective latent heat and Newtonian cooling, that is,

du 2C,
= - —+u—t
) 6L.qo PR o,

(2.2a)
where L. is the latent heat, gy represents the mean spe-
cific humidity of the basic state in the lower layer (the
upper layer is assumed to be dry), u is a constant coef-
ficient for Newtonian cooling, and

1,
6=
o

The convective heating term in (2.2a) is related to
moisture convergence in a simple nonlinear fashion:
in a region of low-level moisture convergence the extra
moisture gained by convergence is condensed out, re-
leasing latent heat, whereas in a region of moisture
divergence no latent heat is released.

The diagnostic Eq. (2.1b) implies a geostrophic bal-
ance between the zonal wind and geopotential. It can
be shown from linear analyses that this constraint is
necessary in determining the meridional wave structure
and direction of wave propagation, and it does not af-
fect the instability and zonal structure. The success of
a 2D (equatorial zonal plane) model in reproducing
3D model results (Lim et al. 1989) leads us to believe
that the essence of the instability with nonlinear heating
can be captured by a 2D model. To facilitate mathe-
matical analysis, we will confine our analysis to motions
on the equatorial zonal plane. The nondimensional
equations can be simplified as

if du/ox <0

(2.2b)
if du/dx> 0.
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ou du d¢
2.3

o T tox =0 (2.32)
a
—E-I- Uo—?+N¢+(1 —61)—=0, (2.3b)
ot ox

where
= u/(BCo)'?, (2.4a)

I = go(RL./2C,Cy?). (2.4b)
In Egs. (2.3a, b), we have used the length scale (Cyp/
8)'/2, the time scale (8C;) ~'/2, the horizontal velocity
scale C,, and the geopotential scale C,?>. With
AP(BC,)'/? being vertical p-velocity scale, the conti-
nuity equation gives w, = du/dx. The nondimensional
numbers 7 and N measure the heating intensity or the
basic-state moisture content in the lower layer and the
strength of Newtonian cooling, respectively. It is ob-
vious that the heating simply acts to reduce the static
stability in the model describing the gravest baroclinic
mode.

3. The nonlinear mode solution

In either the wet or dry region alone, Egs. (2.3a, b)
depict a zonally propagating Kelvin wave. The nonlin-
ear heating, however, can unify the wave motions in
the two regions to form a nonlinear mode with a con-
stant speed propagating through the entire domain
without change of shape, as demonstrated by the nu-
merical experiments (LP; Lim et al. 1989). Let us as-
sume, without loss of generality, that Eqgs. (2.3a, b)
allow a nonlinear mode solution that propagates zon-
ally at a speed c.

To facilitate analysis, we introduce a new coordinate
moving at the propagation speed ¢, that is,

Xy = X — CL. (3.1)
The governing equations (2.3a,b) in the moving co-
ordinates become

ou, Uy Oy

—_ — +—= 2

a PV, Tox, © (3:22)
a ¢* au*

+ —* + —= .
(at N) dx + Uy axs (1- )ax* 0, (3.2b)
where

U* = U() —C (3'3)

represents the mean flow speed relative to the moving
disturbances (hereafter referred to as relative mean
zonal flow), and u, and ¢, are functions of x, and :.
Eliminating ¢, between (3.2a) and (3.2b) leads to
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—(1 =81 -U? *
ar? +2U, aza X ¢ ( U ax3
d
+ N( LI a“*) =0. (3.4a)

Knowing #,, ¢, and w, can be obtained from

ou,

8 2 au*
= U, —* U2 -8 —, (3.4
(at+N)¢ U, ry (1 - U M)ax,.’ (3.4b)

and

We = OUy/0Xx. (3.4¢c)
Since in the transformed coordinates the unstable
modes become stationary, it is natural to assume non-
linear mode solutions of Egs. (3.4a, b, ¢) with the form
(Us, g, ws) = €7 (U(xy), B(x4), W(xy)) (3.5)
where U, ®, W are, respectively, the zonal structure
functions of zonal wind, geopotential height, and ver-
tical p-velocity fields, and ¢ is the growth rate. Substi-
tuting (3.5) into (3.4a) yields

(U2 —1+8D)U"+ (20 + N)ULU’
+ N+ o)U=0,

where the prime denotes derivative wrt x,.

Although (3.6) is nonlinear in the entire domain, it
is linear within the “wet” or “dry” region alone. In
what follows, the subscripts w and d are used to distin-
guish quantities in the wet and dry regions, respectively.
Thus, U, and Uy satisfy, respectively,

(Ui -1+ DUy,
+ (26 + N)U, U, + o(N+ o)U, =0,

(3.6)

(3.7a)
(U2 - 1)U+ e+ N)U, Uy + o(N+ a)U; =0

(3.7b)
which have the following general solutions:
Unw(xs) = exp(m,xy)
X [A; exp(n,xy) + A exp(—n,x,)], (3.8a)
Ua(xy) = exp(maxy)
X [ By exp(ngxy) + Bz exp(—ngx,)], (3.8b)
with
m, = —Ug(N + 20)/[2(U — 1 + )], (3.9a)
n, = VN2UZ + 46(N + o)(1 = I)/
[2(U%2 -1+ D], (3.9b)
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mg = —Ug(N + 20)/[2(U2 - 1)], (3.9¢) e — el e o=l s
| -Ud | Uy : -Ud |
ng=VN?U2 + 40(N + ) /[2(U% - 1)]. (3.9d) ! '| ¢y |
[ R
The determination of the growth rate and structure : v v : oy
of a nonlinear mode requires matching of linear so- | | ! I
lutions at the internal boundaries between the wet and | ug L
dry regions. The geometry of the zonal dqmain and Pt > ! > - ! < < ]
the boundary locations are illustrated in Fig. 1. The s _aa 0 a S X
domain size is limited by the full span of the equator,
which, in nondimensional form, is left center right
L =2xR (ﬁ/co)l/2 dry l wet————><—dry——>
a ’ region region region

where R, is the radius of the earth. It is convenient to
set the origin (x, = 0) at the center of the wet region
where zonal velocity vanishes, that is,

U.(0)=0. (3.10a)

To the east (west) of the origin the low-level wind
is easterly (westerly ). Continuity requires that another
point must exist where the zonal wind also vanishes
in the dry region. It is convenient for us to take this
point as the boundary where periodic boundary con-
ditions apply. However, the location of this point [i.e.,
the fetch of the low-level easterly (westerly) wind] is
unknown a priori. Without loss of generality, the do-
main boundaries are set at —+s and s, respectively,
where s = L/(1 + v) and # is the ratio of the length
scale of the circulation cell west of the wet region center
(westerlies) to that east of the center (easterlies), which
measures the asymmetry of the circulation relative to
the origin over the entire domain. At the domain
boundaries, x, = s and —+s, the perturbation zonal
velocity and its first derivative wrt x, satisfy the con-
tinuity conditions, that is,

Uai(8) = Us(—7s) = 0, (3.10b)
and
Ui (s) = Uy-(—7s),

where the plus and minus subscripts denote solutions
in the right and left dry region, respectively (see
Fig. 1).

(3.10¢c)

Ui(xy) = [

Uit (x4) = B exp(maxy)shng(s — xy),

Us-(x4) = —Bexp[my(1 + v)slexp(myxy)shng(ys + xy),

le—b={1+a)a—
- = 24R,/BICo

FIG. 1. The geometry of the model domain and the sketch of the
perturbation motion in the model. Symbols are explained in the text.

Likewise, the left and right internal boundaries be-
tween the wet and dry regions can be represented by
—aa and a, respectively. The total length of the wet
region (or ascending branch) is b = (1 + a)a, where
« is a measure of the asymmetry of the circulation
within the wet region. Across the internal boundaries,
X, = a and — aa, the mass and pressure must be con-
tinuous. This will be warranted by the following
matching conditions:

Uw(a) = Ud+(a)s (3'10d)
Uy(—aa)= Uz (—aa), (3.10e)
(Ui +1-1)U(a) = (Ui — NUy(a), (3.10)

(Ui +1-1)Uy(—aa) = (Ui — 1NUy_(—aa).
(3.10g)

With the aid of Eq. (3.10a), the wet region solution
(3.8a) becomes
Uu(xe) = A exp(m,x, ) sh(n,xe), —oaa <Xy <a.
(3.11a)
Similarly, with constraints (3.10b) and (3.10c), the
dry region solution (3.8b) becomes

A< Xy <35

Substitution of (3.11a, b) into the matching conditions (3.10d, e, f, g) yields

and

shng(s — a)shn,aa = exp[(m,, — my)(1 + a)a + my(1 + v)s]shny(ys — aa)shn,a,

(3.11b)

—YS < Xy < —0d.
B = Aexp[(m, — my)alshn,a/shn(s — a), (3.11¢)
(3.12)
(U2 + I—- 1)n,thny(s — a) = —(U3% — 1)ngthn,a, (3.13)
(U2 + I — D)ny,thng(ys — aa) = —(Ui — 1)ngthan,a. (3.14)
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Equations (3.12), (3.13), and (3.14) determine the
relationships among the growth rate o, the structural
asymmetry parameters (« and v) and zonal scale (a
or b), the basic flow properties (I, U, ), and the thermal
damping rate (V). This set of equations may be referred
to as the dispersion relations for the nonlinear mode.
Equations (3.11a, b, ¢) describe the structure of zonal
wind field for the nonlinear mode. The corresponding
structures for geopotential and vertical p velocity can
be readily obtained from Eqgs. (3.4b) and (3.4c).

In the absence of Newtonian cooling, the dispersion
equation (3.12) remains the same, but (3.13) and
(3.14) are simplified as

V1 — Ithny(s — a) = —thn,a, (3.15)
V1 — Ithn,(vs — aa) = —than,a, (3.16)

with parameters m,,, my, n,,, and n, defined by

my, = —aUy /(U2 +1—1), (3.17a)
ne=lo|lVI = I/(UX+1—1), (3.17b)
my = —oU,/ (U3 — 1), (3.17¢)
ng=|ol/(U: — 1). (3.17d)

It is worthwhile to make a few remarks on the non-
linear solutions (3.11a, b) before showing the numer-
ical results.

1) A meaningful solution obtained with the pro-
posed boundary and matching conditions requires that
the vertical velocity does not change its sign within the
wet (or dry) region and the zonal velocity has the same
sign either ahead of or behind the wet region center. It
can be shown that the solutions (3.11a, b) always satisfy
these requirements.

2) It can be proven that if the nonlinear heating is
replaced by linear heating the results in this section
match the linear theory. In fact, with § = 1 over the
entire domain and using the periodic boundary con-
ditions, the general solution (3.8a) reduces to a linear
normal-mode structure (sinusoidal wave ) with growth
rate and phase speed satisfying the linear dispersion
relation. Determination of the direction of phase prop-
agation and the meridional structure requires further
use of meridional boundary conditions.

3) It can be shown that the growth rate does not
change when the relative mean zonal flow reverses its
dire¢tion. However, the zonal structure of the pertur-
bation in a relative mean westerly flow is a mirror image
of that in a relative mean easterly flow with respect to
the wet region center; namely, the circulation cell to
the east of the wet region center is larger and weaker
than its counterpart to the west of the center. In both
cases, the circulation cell is reinforced and compressed
in the “windward” side.

4) There exists a threshold heating intensity (or
moisture content) 7, for the instability, which is
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I.=1-U3. (3.18)

If I < I, only neutral modes are possible, while unstable
modes emerge when 7 > I.. In the absence of mean
flow, (3.18) matches the linear theory. With nonlinear
heating the instability threshold is affected by the prop-
agation speed relative to the mean flow.

5) The existence of unstable modes requires that

Uyl = |Up— ¢l < 1. (3.19)

If there were no mean flow, the constraint (3.19) would
imply that the propagation speed of the moist unstable
mode could not exceed the long gravity wave speed in
dry atmosphere. This agrees with our experience in
dealing with linear waves: an addition of latent heating
always slows down wave propagation.

4. The behavior of unstable nonlinear modes

The analytical solutions provide an opportunity for
close scrutiny and better understanding of the dynamics
of the unstable nonlinear mode. The basic nondimen-
sional parameters in the present model are I, NV, and
U, . Their meanings are briefly explained in Table 1.
We note that the relative mean flow U, denotes the
mean zonal flow observed following the moving per-
turbation. For a stationary mode U, simply represents
the mean flow speed, while in a quiescent basic state
U, equals —c(c1is phase speed). In what follows, except
as otherwise stated, the following values are used for
the basic model parameters: 7 = 1.15, U, = —0.2, and
N =0.0.

a. The growth rate

It is convenient to define the ascending branch length
(ABL) as a characteristic scale of the unstable mode.
The dependence of growth rate on ABL is illustrated
in Fig. 2 for a number of parameter settings. In all
cases the most striking feature is that the growth rate
unboundedly increases as the ABL decreases. Thus,
for a fixed basic-state parameter setting, the fastest

TABLE 1. The basic model parameters.

8 Equatorial 8 parameter (8 = 2Q/a) 23X 107" m™s7!

Co Long gravity-wave speed of the

gravest baroclinic mode 50ms™!
qo Mean specific humidity in the lower
layer between 500 and 1000 mb 8.0gkg™
M Newtonian cooling coefficient 5X 107657
U, Nondimensional basic zonal flow
velocity relative to propagating
wave packet -0.20
N Nondimensional Newtonian cooling
coefficient 0.25
1 Nondimensional measurement of

the mean moisture content in the

lower layer L.15




554

T | i T T
Uys-0.2, 12098
U,z-02, 1=115
U,=-02, 1= 1.32
Uy 00, 1= LIS
U,=-02, 1= 115

T T
— N:00,
—— N: 00,
— N:00,
--- N:00,
=== N:015,

GROWTH RATE (Day?)

ASCENDING BRANCH LENGTH (Degree of longitude)

FI1G. 2. Growth rate of the nonlinear mode as a function of the
ascending branch length for different heating intensity (1), Newtonian
cooling rate (N), and relative zonal mean flow (U,).

growing mode has the smallest ABL. In the numerical
experiment of Lim et al. (1989), the disturbance with
a narrower convection and circulation region indeed
grew faster. The ABL of the fastest growing disturbance
is comparable to the resolvable scale of their spectral
model. The present results suggest that without the
limitation of the model resolution, the ABL of the fast
growing mode possibly assumes even smaller scale.
Similar behavior was previously found in Ekman-
CISK with nonlinear heating (e.g., Charney and Elias-
sen 1964). It seems that the effect of positive-only
heating on the dependence of growth rate on the scale
of the ascending branch is similar in Ekman-CISK
and Kelvin wave—CISK. In both cases, the smaller the
ascending region is, the faster the unstable mode grows.

Comparison of the three solid curves in Fig. 2 in-
dicates that the growth rate of unstable modes increases
with increased moisture content or heating intensity.
This behavior resembles that of the linear normal
mode. It is, however, interesting to observe the influ-
ence of the relative mean flow on the growth rate. The
comparison of the results for cases with and without
relative mean flow in Fig. 2 shows that the presence of
an easterly relative mean flow reinforces the instability.

b. The zonal structure

The unstable mode subject to nonlinear heating
possesses a fixed shape (structure) with amplitude
growing exponentially. The structure, however, varies
with the basic-state parameters and its characteristic
scales. A representative zonal structure for a growing
mode in a relative mean easterly flow is illustrated in
Fig. 3a. The length of ascending branch is assumed to
occupy about one-tenth of the equatorial belt. The most
prominent structural feature is the asymmetry. Two
types of asymmetry are identified. First, the ascending
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branch (wet region) is much narrower than the de-
scending branches (dry regions). This wet-dry asym-
metry is observed in the structure of intraseasonal os-
cillations. It was found by previous numerical studies
of both Ekman-CISK (e.g., Syono and Yamasaki 1966,
Koss 1975) and equatorial wave-CISK (LP; Lim et al.
1989). Second, the circulation to the east of the wet-
region center is more intense than that to the west,
while the spatial scale of the low-level easterlies is
smaller than that of westerlies. This second asymmetry
was reported by LP and Lim et al. (1989) for eastward-
moving disturbances. For a mode stationary relative
to the mean flow, the east—west asymmetry disappears
(Fig. 3b). This indicates that the positive-only heating
alone is not sufficient, while the presence of relative
mean flow is essential for the creation of the east—-west
asymmetry.

The structure varies when heating intensity (/) or
Newtonian cooling rate (N) changes. In response to a
stronger heating intensity, the circulation and geopo-
tential are reinforced in the vicinity of the two internal
boundaries and are weakened in the dry regions far
away from the internal boundaries (Fig. 3c). Mean-
while, the growth rate increases substantially. This im-
plies that a more rapidly amplifying mode has its energy
more concentrated in the vicinity of the wet region.
The Newtonian cooling slightly diminishes the strength
of the circulation but dramatically reduces the geo-
potential (Fig. 3d). As a consequence of the uneven
damping between the zonal wind and geopotential, the
ratio of kinetic to available potential energy of the
nonlinear mode increases.

Since the structural asymmetry is a fundamental
feature of the nonlinear mode, it deserves closer scru-
tiny. Figures 4a and 4b show how the asymmetries
described by parameters « and v vary with b (ABL)
(cf. Fig. 1 for the definition of «, vy, and b) for growing
nonlinear modes under different basic-state conditions.
Several features are noticeable. First, there is a cutoff
ABL for each given heating intensity and thermal
damping. In the absence of Newtonian cooling, the
cutoff ABL under a typical heating intensity (/ = 1.15)
is about 60 degrees of longitude, implying that the as-
cending branch covers a much smaller area than the
descending branches. Increasing Newtonian cooling
reduces, while increasing heating intensity increases the
cutoff ABL significantly. Second, v is generally greater
than «, particularly for small ABLs. This means that
the east—west asymmetry of spatial scale lies principally
in the descending branches. Since v increases with de-
creasing ABL the mode with a narrower wet region
exhibits a larger structural asymmetry. However, the
degree of the asymmetry is limited, because vy attains
its maximum value of 1.5 as ABL approaches zero.
Finally, the addition of Newtonian cooling enhances
the structural asymmetry, especially for the modes with
large ABL.
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c¢. The effects of dissipation

With linear heating Newtonian cooling dissipates
disturbances nearly equally for all wavelengths. With
nonlinear heating the dissipation effect of the Newton-
ian cooling is weakly scale dependent. Although it se-
verely affects large scales, the amount of growth rate
reduced by Newtonian cooling rate N is nearly a con-
stant (slightly smaller than N/2) for perturbations with
ABL smaller than 30 degrees of longitude. This, as a
matter of fact, is reminiscent of the effect in the linear
case (Wang 1988). As a consequence, the weakly un-
stable modes whose inviscid growth rate is comparable
to the magnitude of the Newtonian cooling rate will
be crucially affected.

Other forms of dissipation have also been tested in
the framework of the present model. Without devel-
oping formula, we simply state the results.

1) Ifa Rayleigh friction alone is added to the zonal
momentum equation, it plays an equivalent role as

Newtonian cooling in reducing the growth rate. Yet,
Rayleigh friction does not damp the geopotential field
as remarkably as Newtonian cooling does.

2) A combination of Newtonian cooling and Ray-
leigh friction with an equal damping rate will reduce
the growth rate for all scales (ABL ) by an amount equal
to the sum of the damping rate due to the Newtonian
cooling and Rayleigh friction alone.

3) Ifboth dissipation mechanisms coexist and have
different strengths, 7,7 and 7,7! (v, > 7,7'), the
growth rate would be reduced by 75! plus a reduction
caused by a Newtonian cooling (or Rayleigh friction)
alone with a strength (7,”' — 7,7').

The effects of dissipation on the growth rate bear
similarities to their counterparts in a linear heating case.
That is, the dissipation effects do not seem to be influ~
enced by the nonlinear heating. However, the presence
of Newtonian cooling and Rayleigh friction enhances
the structural asymmetries of the nonlinear mode.
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FIG. 4. (a) Asymmetry parameter « (the ratio of the zonal scale
of the low-level westerlies to that of the easterlies in the wet region)
as a function of ascending branch length. (b) The same as (a) except
for parameter v, which denotes the ratio of the zonal scale of the
low-level westerlies to that of the easterlies over the entire domain.
Parameter values used to compute each curve are given in the legends.

d. The influence of zonal boundary conditions

The choice of a periodic boundary condition is
physically consistent with the cyclic nature of the
equatorial geometry. The energy of the resultant un-
stable mode is concentrated in a relatively small region,
especially when the growth rate is large. For those fast
growing modes, their behavior might not be severely
distorted if the periodic boundary condition were re-
placed by an infinite boundary condition that requires
that perturbation fields vanish at infinity. Solutions
with such a boundary condition can be derived with
much less mathematical manipulations. Figure 5 com-
pares the results obtained using the two different
boundary conditions. For fast growing modes the
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growth rates are nearly the same (Fig. 5a). The cor-
responding structures also differ negligibly. For the
slowly growing modes, however, with the infinite
boundary condition the growth rate is overestimated
(Fig. 5a) and the circulation cell is elongated; yet, the
east-west asymmetry in the strength remains (Figs. 5b
and 5c¢). The use of a periodic boundary condition
(3.10) restrains the extent of circulation, and yields
slowly growing modes. Therefore, the existence of the
slowly growing mode appears to crucially depend on
the cyclic nature of the zonal domain.
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5. Discussions and conclusions
a. Limitations of the present model

The model used in this study is the simplest model
suitable for demonstration of the nonlinear heating ef-
fects on moist equatorial waves. It involves two addi-
tional simplifications compared with LP’s numerical
model. First, the vertical resolution was reduced from
five to two levels so that only the gravest baroclinic
mode is described. A drawback of the single-mode
model is that the heating simply acts to reduce the
basic-state static stability and the unstable Kelvin mode
is stationary with an oscillatory meridional structure.
When heating is distributed at mulitilevels, the inter-
action of vertical modes will yield a propagating un-
stable mode. The essential features of the instability,
however, can be qualitatively illustrated using a two-
level model. The second simplification is the neglect
of meridional variation. This saves an enormous
amount of mathematical manipulations, but leads to
undetermined meridional structure and phase speed
¢. This, however, should not be regarded as a serious
defect, because the behavior of the nonlinear mode in
the 2D equatorial zonal plane model is qualitatively
the same as that in a 3D model as demonstrated by
numerical experiments (Lim et al. 1989). As a matter
of fact, we have solved a problem with the v-momen-
tum equation included using infinite horizontal
boundary conditions. The resultant unstable mode is
stationary and has an equatorially trapped meridional
structure. The features in zonal structure and growth
rate are similar to those we have obtained from the
present 2D model.

b. The asymmetric zonal structure

The most salient feature of the nonlinear mode is
its asymmetric structure. For a typical value of atmo-
spheric heating intensity (or moisture content), there
is an upper bound for the ABL that is about 60 degrees
of longitude (Fig. 4). Thus, the zonal scale of the as-
cending branch is normally much smaller than that of
descending branches. From mass continuity, it follows
that the upward motion must be much more intense
than the downward motion. This asymmetry common
to both Ekman~CISK and wave-CISK is a direct con-
sequence of the nonlinear heating. By removing phys-
ically unrealistic negative heating in the descending re-
gion, the energy can be generated only within the as-
cending region. As a result of the CISK selectivity in
the ascending region, the length of the ascending branch
tends to decrease. On the other hand, the adjacent de-
scending branches passively respond to the lateral forc-
ing from the ascending branch, covering a much
broader domain (Chang and Lim 1988). Under normal
heating intensity (/ = 1.15) and for the slowly growing
mode (growth rate < 0.3 day™"), only periodic bound-
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ary conditions can restrain the ascending branch length
to create this wet-dry asymmetry (Fig. 5a). In this
sense, the wet—dry asymmetry is partially attributed to
the cyclic geometry of the equatorial belt.

In addition to the wet-dry asymmetry, there is an
east-west asymmetry in the zonal structure; that is, the
circulation cell to the east of the wet region center is
smaller in size and stronger in strength than its coun-
terpart to the west of the center (Fig. 3a). This asym-
metry, however, is primarily caused by the propagation
of the nonlinear mode relative to the mean flow. It
disappears if the mode is stationary relative to the en-
vironmental flow. On the other hand, it is enhanced
when the propagation speed relative to the mean flow
increases.

¢. The energy spectrum of the nonlinear wave packet

Unlike linear (wavelike ) heating, which forces a sin-
gle Fourier mode, the nonlinear heating forces all Fou-
rier harmonics and integrates them into a wave packet.
All linear normal modes within the wave packet will
eventually have the same growth rate and phase speed
so that the shape of the wave packet is unchanged as
demonstrated by numerical integrations (Hayashi and
Sumi 1986; LP; Lim et al. 1989). The energy partition
among Fourier harmonics is thus fixed. It is of interest
to examine the perturbation energy spectra for different
nonlinear modes.

Figure 6 depicts the energy spectra for three nonlin-
ear modes with ABL = 40, 18.6, and 5.3 degrees of
longitude, respectively. All spectra attain their maxima
at wavenumber one irrespective of the ABL size. How-
ever, the shorter the ABL, the more energy is carried
by short waves. In addition, the kinetic energy spectrum
peaks at wavenumber three for the mode with ABL
= 5.3 degrees of longitude (for the other two modes,
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the kinetic energy spectra are still dictated by wave-
number one). The mode with ABL = 18.6 degrees of
longitude is similar to the disturbance simulated in LP.
By decomposing the amplitude of the upper-level zonal
wind into Fourier harmonics, LP concluded that when
a disturbance reaches a steady state, wavenumber one
contributes the most to the total zonal wind. Our results
(Fig. 6) indicate that up to a moderate growth rate
O(1 day™') the energy concentration on the longest
wavelength is a common characteristic of nonlinear
modes. It is, therefore, conceptually necessary to dis-
tinguish the dominant wavenumber in the energy
spectrum from the characteristic scale of the nonlinear
mode.

d. The characteristic scales of the nonlinear wave
packet

The nonlinear mode growth rate is shown analyti-
cally to be inversely proportional to the ascending
branch length (ABL), which is the width of the wet
regions. In this regard, the positive-only heating has
similar effect on the scale dependence of the growth
rate for both Kelvin wave-CISK and traditional Ek-
man-CISK.

One may question the adequacy of defining the ABL
as a characteristic scale for the nonlinear mode because
the total circulation may cover an area much larger
than the wet region. To focus on the circulation pattern
one may consider another characteristic scale—the to-
tal circulation extent (TCE), which can be defined by
the zonal distance between the two cutoff points where
the zonal wind speed drops below one-tenth (or e-fold-
ing) of its maximum value at the internal boundaries.

It has been shown that the ratios of TCE to ABL for
various heating intensities all approach certain finite
constants as the ABL approaches zero (Fig. 7), imply-
ing that the TCE also tends to vanish. Thus, the con-
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clusion that the smallest-scale nonlinear mode corre-
sponds to the largest growth rate is valid regardless of
which characteristic scale is considered.

The TCE, on the other hand, does serve as a char-
acteristic scale that is to some degree independent of
the ABL. Figure 8a depicts the TCE as a function of
the ABL for different heating intensities. As the ABL
equals 5 degrees of longitude, the TCE is about 60 de-
grees of longitude for I = 1.15 if 0.1 times the maxi-
mum value is the cutoff criterion. The TCE rapidly
increases with increasing ABL. As ABL reaches 25 de-
grees of longitude, the TCE covers 270 degrees of lon-
gitude. It is important to notice that the TCE increases
with a decreasing I (or growth rate) if the ABL is fixed.
This implies that for slowly growing modes, the ratio
of TCE to ABL tends to be large. Figure 8b illustrates
this behavior more clearly. For fast growing modes,
the total circulation extent shrinks rapidly. On the other
hand, for slowly growing modes (e.g., e-folding time
greater than 5 days) the total circulation covers at least
three quarters of the equator, even for the mode with
an ABL as small as 5.3 degrees of longitude. This re-
veals an important feature of the low-frequency mode:
the TCE tends to be planetary scale while the ABL is
synoptic or subsynoptic scale. Therefore, the low-fre-
quency unstable wave packet induced by nonlinear
heating is characterized by two scales: the ABL and
the TCE.

e. In relation to the numerical experiment results

Numerical integration of the initial-value problems
shows that the evolution of unstable disturbances has
two stages: an initial adjustment and a steady stage. In
the adjustment stage, nonlinear heating induces energy
transfer from short to long wavelength. The resultant
wave packet has an energy spectrum dominated by
wavenumber one (LP; Lau et al. 1989). In the later
steady stage, this wave packet organized by nonlinear
heating grows slowly without change of its shape, im-
plying that all linear modes in the wave packet obtain
identical growth rates and phase speeds (Lim et al.
1990).

The wave packet is characterized by a narrow pre-
cipitation region of synoptic scale (~10° km) and a
wide circulation extent of planetary scale (~10* km).
This double scale characteristic and asymmetric zonal
structure are in good agreement with those of the non-
linear mode obtained in the present analytical model
analysis. Therefore, the steady disturbance found in
the numerical experiments may be viewed as a real-
ization of one of the nonlinear wave packets.

Our results also suggest that a variety of wave packets
may possibly form due to the nonlinear heating effects.
They may exhibit different characteristic scales (ABL
and TCE), growth rate, and structures, depending upon
the nature of the initial forcing, basic flow properties,
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and dissipation. However, up to a moderate growth
rate of O (1 day ') the energy spectra of all wave pack-
ets are dominated by the lowest few wavenumbers. If
the basic-state parameters and initial forcing are so
constrained that the wave packet grows stowly, the total
circulation extent is normally global scale, yet the as-
cending branch is synoptic scale. These structure and
scale characteristics result from the effects of nonlinear
heating and the cyclic geometry of the equator.
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